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Motivation

= Learned Optimizers (LOs) can discover superior update rules, achieving
faster and better convergence than hand-designed optimizers on
certain tasks.

= However, LOs often saturate quickly or diverge when evaluated on
very long unrolls (e.g., 10x larger than meta-training horizon).

= Extending unroll length during meta-training increases computational
cost at least linearly and frequently leads to divergence due to
compounding errors.

Meta-Training Pipeline
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Figure 1. Overview of meta-training a Learned Optimizer. At each outer step ¢, the LO
parameters ¢; update the optimizee parameters 6,, over N inner steps. Per-step
meta-losses L' are accumulated, and the resulting meta-gradient updates ¢; — ¢;41.

ELO Algorithm

We propose Efficient Long-horizon Learning (ELO): a novel meta-training
scheme that leverages a buffer to efficiently extend unroll length during
meta training without extra cost, along with an online behavior cloning
strategy for stable meta-training.

Algorithm 1 Efficient Long-horizon Learning (ELO). Green: buffer opera-
fions. Yellow: behavior cloning.

Input: M Size of replay buffer
Py, Threshold for buffer initialization
ay  Mixing coefficient (increases 0 — 1)
1. Initialize replay buffer B = {s1,...,sm}t,m < M

2. forouterstept=0,1,...,7T —1do > outer loop

3; Sample Pg ~ Uniform(0, 1)

4. if P> Py, andt > 0 then

5: Initialize from buffer: sy, ~ B (K # 0) > Apply buffer
6: else

7: Random initialization (K = 0)

8; Sample Ny sh € (K, N+ K)NZ

9: forinnerstepn=K,..., K+ N —1do > inner loop
10: QH =0+ AHH > Adam update
11: Hgﬂ =0, + A@O > LO update
12: Opi1 = (1 — O‘t)enﬂ - oat@nﬂ > Fused trajectory
13: Lmeta — (1 — o) L9 4 qpLlash > Fused meta-loss
14: Spa1 = (Opa1,Cra1) > Optimizee parameters, momentum, etc.
15: if n == N then > Update buffer
» B enqueue(B, sy,), m < M

enqueue(dequeue(B), sp), m =M

17 g =6( ij[](vﬂ crmetagit 99 ¢y, ay)) > Estimate meta gradient
18: Q1 = U(gt, t; Ot) > Update LO

Sampling Efficiency & Meta-Training Stability
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Figure 2. Left: Buffer initialization achieves longer effective unrolls without extra cost.
Right: Buffer alone causes collapse; adding behavior cloning ensures stable
meta-training.

Vision Tasks
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Figure 3. Evaluation on ImageNet-1K (32 x 32 x 3) using MLP-d3-w128.
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Figure 4. Evaluation on ImageNet-1K (32 x 32 x 3) using ResNet18.
Language Task
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Figure 5. Evaluation on FineWeb-10B using gpt2-mini.

Results summary

Table 1. Best performance of different methods on vision and language tasks. For vision
tasks (ImageNet-1K (32x32)), we report test accuracy (%). For language tasks
(FineWeb-10B), we report test cross entropy loss.

Method ImageNet-1K ImageNet-1K FineWeb-10B
MLP ResNet18 GPT2-mini

Metric Acc. (%) Acc. (%) CE-Loss
AdamW 8.26 35.62 431

LO (naive) 6.69 33.83 429

LO (curriculum) 7.77 31.96 4 44
ELO-LO 8.77 36.51 4.13

Conclusion

We introduced ELO, an efficient meta-training scheme for learned opti-
mization. ELO consistently outperforms AdamVW and naive LO baselines
across vision and language tasks, achieving strong generalization to 10x
longer unrolls.
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