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Motivation

Learned Optimizers (LOs) can discover superior update rules, achieving
faster and better convergence than hand‐designed optimizers on
certain tasks.

However, LOs often saturate quickly or diverge when evaluated on
very long unrolls (e.g., 10× larger than meta‐training horizon).

Extending unroll length during meta‐training increases computational
cost at least linearly and frequently leads to divergence due to
compounding errors.
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Figure 1. Overview of meta‐training a Learned Optimizer. At each outer step t, the LO
parameters ϕt update the optimizee parameters θn over N inner steps. Per‐step
meta‐losses Lmeta

n are accumulated, and the resulting meta‐gradient updates ϕt → ϕt+1.

ELO Algorithm

We propose Efficient Long‐horizon Learning (ELO): a novel meta‐training
scheme that leverages a buffer to efficiently extend unroll length during
meta training without extra cost, along with an online behavior cloning
strategy for stable meta‐training.

Algorithm 1 Efficient Long‐horizon Learning (ELO). Green: buffer opera‐
tions. Yellow: behavior cloning.
Input: M Size of replay buffer

Pth Threshold for buffer initialization
αt Mixing coefficient (increases 0→ 1)

1: Initialize replay buffer B = {s1, . . . , sm}, m ≤M
2: for outer step t = 0, 1, . . . , T − 1 do ▷ outer loop
3: Sample PB ∼ Uniform(0, 1)
4: if PB > Pth and t > 0 then
5: Initialize from buffer: s∗ ∼ B (K ̸= 0) ▷ Apply buffer
6: else
7: Random initialization (K = 0)
8: Sample Npush ∈ (K, N + K) ∩ Z
9: for inner step n = K, . . . , K + N − 1 do ▷ inner loop

10: θHn+1 = θn + ∆θHn ▷ Adam update
11: θOn+1 = θn + ∆θOn ▷ LO update
12: θn+1 = (1− αt)θHn+1 + αtθ

O
n+1 ▷ Fused trajectory

13: Lmeta
n = (1− αt)Lbc

n + αtLtask
n ▷ Fused meta‐loss

14: sn+1 = (θn+1, ζn+1) ▷ Optimizee parameters, momentum, etc.
15: if n == Npush then ▷ Update buffer

16: B ←
{

enqueue(B, sn), m < M

enqueue(dequeue(B), sn), m = M

17: gt = G
(∑K+N

n=K+1L
meta
n (θHn , θOn ; ϕt, αt)

)
▷ Estimate meta gradient

18: ϕt+1 = U(gt, t; ϕt) ▷ Update LO

Sampling Efficiency & Meta-Training Stability
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Figure 2. Left: Buffer initialization achieves longer effective unrolls without extra cost.
Right: Buffer alone causes collapse; adding behavior cloning ensures stable
meta‐training.

Vision Tasks
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Figure 3. Evaluation on ImageNet‐1K (32× 32× 3) using MLP‐d3‐w128.
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Figure 4. Evaluation on ImageNet‐1K (32× 32× 3) using ResNet18.

Language Task
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Figure 5. Evaluation on FineWeb‐10B using gpt2‐mini.

Results summary

Table 1. Best performance of different methods on vision and language tasks. For vision
tasks (ImageNet‐1K (32×32)), we report test accuracy (%). For language tasks
(FineWeb‐10B), we report test cross entropy loss.

Method ImageNet‐1K ImageNet‐1K FineWeb‐10B
MLP ResNet18 GPT2‐mini

Metric Acc. (%) Acc. (%) CE‐Loss

AdamW 8.26 35.62 4.31
LO (naive) 6.69 33.83 4.29
LO (curriculum) 7.77 31.96 4.44
ELO‐LO 8.77 36.51 4.13

Conclusion

We introduced ELO, an efficient meta‐training scheme for learned opti‐
mization. ELO consistently outperforms AdamW and naive LO baselines
across vision and language tasks, achieving strong generalization to 10×
longer unrolls.
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